Consulting Civil & Structural Engineers

4 Edward Square, London N1 OSP Tel: 020 7837 5377

6 Hale Lane, London NW7 3NX Tel: 020 8959 1666

Email: <u>mredston@compuserve.com</u>

STRUCTURAL DESIGN SHEETS

(CALCULATIONS)

Structural Engineer | Aleur Oly Rahman

Martin Redston Associates	Date	Sheet No.	
Consulting Civil & Structural Engineers		Eng. AOR	7 + 0/
4XEdward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211	7	Job No.	T.01
6 Hale Lane, London NW7 3NX Tel: 020 8959 1666 Fax: 020 8906 8503 Email: martin@redston.org		Design Dat Characteristic Ac Loudings	
• Unit Weights (density) of basic Construction materials.	KN/m3		
Steel Aluminium Concrete Brick Timber	78.5 24.0 24.0 22.5 6.0	(25.0 RC)	
€ Load KN/m² per mm thickness.			
Brick wall - 0.021 N Block wall - 0.012 N			
* Unless otherwise stated, all refere EN 1993-1-1: 2005.	ences are	LC	
· Partial factors for actions, ULS	,		
Partial factor for Permenant acti Partial factor for Variable act Reduction factor, 5 = 0.85	ions, Yg	= 1.35	
O Characteristic actions	gr (IEN/m²)	Ze (EWIM²)	
Timber floor boards, Plywood O'Exglm3 (22mm) Rigid insulation, 25mm 7:32 kglm2. (75mm) Timber Joists. (max) =(0.200×0.050.11.0)×0.4 × 4.2. Plasterboard, gypsom & skim , Services (ceiling) Timber floor, (Residential floors) , (Residential balrones) , (Office, general) Rafters, battens & roofing feet State	0.13	1 55550	
Flat, timber roof Stoped, timber roof Stud Partition wan Solid b'wk wan, to 225mm . t = 103mm Cavity wan, to=100mm Glass (19mm max), float Screed, 25mm (Sand Kement)	555000009 52500009 01052400	0.75	

	•	
Martin Redston Associates Consulting Civil & Structural Engineers	Date 07/11/14 Eng. AoR	Sheet No.
3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211	Job No. 14.647	
6 Hale Lane, London NW7 3NX	Epworth, Antrig	Road
Tel: 020 8959 1666 Fax: 020 8906 8503	London Ni Characterisi	hic Actions
Email: martin@redston.org	& desig	n loadings
· (TI) - span = 2400mm (flat roof load) get = 0.75× 2.7/2 = 1.0 cm/ 2etr = 0.75× 2.7/2 = 1.0 cm/	 	2No. 50x150 : (C16) Imax = 3.5kN
• (72) - Span = 3500 mm $P_{T1} = \frac{3.5}{1.4} = 2.5 \text{ kN}$ @ 700 mm @ 2700 mm		3No. 50x50 :. (C24) V _{max} = 5.2×N
(flat roof load) getr = 0.75 × 0.4 = 0.3 w/m 9xfr = 0.75 × 0.4 = 0.3 w/m		
· (BI) - Span = 4100mm		
(Solid 225mm) gew = 5.1×1:5 = 7.65eV/n.		
(Stud wall) grew = 1.0 x 3 = 3 = 1 = 10 m		
(floor Jousts) get = 0.6 x 3/2 = 0.9 eula. 2xf = 1.5 x 3/2 = 2.25 eula.		152UC37
(Sloped Poof) $g_{12} = 1.2 \cdot x^{-3/2} = 1.9 \cdot w/n$. $g_{21} = 0.75 \times 3/2 = 1.2 \cdot w/n$.		max = 04120
$P_{+2} = \frac{5.2}{1.4} = 3.71 \text{ D} 700 \text{ mm}$ 3300 mm.		
· (B2) - Span = 3500mm.		
(Solid 103mm) grew = 2.5 x 6 = 15 cm/m blue wall)		
(flour load) get = 0.6 x 6.7/2 x 2 = 4 w/m get = 1.5 x 6.7/2 x 2 = 10 w/m	· ·	:. 203UC 46 Vmix = 82EN
(Roof load) 9 to = 1.25 x 2 = 2.5 ev/m 9 to = 0.75 x 2 = 1.5 ev/m.		
$ \frac{62 \times 10^3}{1.5 \times 1.4 \times 200 \times 0.42} = 465 : 8$	500 × 200 × 250 op (C20)	

Martin Redsto	on Associates		Date 07/11/14	Sheet No.
Consulting Civil & S	Structural Engineers		Eng. AoR	I03
3 Edward Square, Lond Tel: 020 7837 5377 Fax		\boxtimes	Job No. 14,647	
6 Hale Lane, London N			Epworth, Antr	in Koaa NWS
Tel: 020 8959 1666 Fax Email: martin@redston.		LJ	4 Character	NW3 nstrc Actions
			4 Desi	ian Loadings-
· (LI) -	span= 6500mm	`		
P 54	= 39W @ 37	610		
BI 1.4	2 3/20 6 3/1	OOmm		: 203 uc46
(Laving Wall)	grew = 4.5 x 0.7	= 3.2 w/m		Ymax = 49W
	=			Vmn = 42 kW.
(factood)	gefr = 0.75 × 0.4 gefr = 0.75 × 0.4	1 = 0.3 w/m		
(c1) - he	eight = 3000mm (n	nax)		
NEd = 49.	en : Myred =	49 x v · 2 = 10) bUm.	100×100×6.3
Hus Pad fo	indatan 1 4	9 - 059	6005.G x	
1103	undation $1 \int \frac{4}{1.4}$	×100	lloode	
· (B3) - Spa			Pad Footings.	
1 B1 = 37	- = 39W @ 350	10mm.		
PB2 = 82 1.4	-= 59W @ 350	10mm.		
(Solid 225mm) b'wk wall (flat loof load)	gew = 5.1 x 3.1 x 1	رود 13.5 ع د د رود 13.5 ع د د د د د د د د د د د د د د د د د د	Ulm - 3500mm	
(flat louf land)				
	guer = 0.75 x 0.4 guer = 0.75 x 0.	4 = 0.3 eU/m	@) 0 -3500mm	
(floor food)	geft = 0.6 × 0.4 = 9eft = 1.5 × 0.4 =	0.24 W/m 0.60 W/n	@ 0-3500mm	:254×254x89 UC Vmox = 120 w
	gefi = 0.6 × 0.4 × 2 gefi = 1.5 × 0.4 × 2	= 0.98 W/m	@ 3500-6400mm	Vm=100EN
(foof load -Sluped)	getr = 125 x 0 5 = 9etr = 0.75 x 0 5	0.63 w/m = 0.40 w/m.	@0~\$500mm	S= 7.9 mm.
· (2) - heigh	ht = 3000mm			
Nea = 120 EN	1.	0 x0.2 = 24 L		· 1520030
			2- (-1) 2	50 × 100 × 6:3 BHS.
			7	

Martin Redston Associates Consulting Civil & Structural Engineers	Date 07/11/14 Eng. AoR	Sheet No.
3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211	Job No. 14.647 Epworth, Antrin	
6 Hale Lane, London NW7 3NX Tel: 020 8959 1666 Fax: 020 8906 8503	, ,	
Email: martin@redston.org	Lendon NU Characteristic & Design	Localings.
· B3 - around beam bearny		
$\frac{120 \text{ kd}}{6.4 \text{ k}(.4)} = \frac{(120 + 100) \text{ kd}}{6.4 \text{ k}(.4)} = \frac{25}{24} = \frac{25}{100} =$	0.25 250 wd	
	footing log.	
· (B4) - Span = 1700mm		-
(Solid 103m) gen = 2.5 x 6 x 0.85 = 13 EU/m.		100×140dp POC-B
(Stud-wall green = 0.5 x 3 = 1.5 mln.	V	m= 15w.
(floor load) get = 0.6 × 0.7 × 2 = 1 × 1 m get = 1.5 × 0.8 × 2 = 2.4 × 1 m 17.9 × 1	^. <u>-</u>	
1 : My and = 6.5 wm c	9.69 Wm	
· (B5) - span = 2600 mm	1	- 152×89×16 UB
(flow load) gef = $0.6 \times 2 = 1.2 \times 1/m$ $9ef = 1.5 \times 2 = 3.0 \times 1/m$		mx = llw
Padshal 150 x 100 de (C20)		
· (B6) - Spen= 1400mm		
PBS = 11-4 = 7.9W @ 500mm.		
(flour load) gef = 0.6 x f.5/2 = 2 = 8.9 EN/n 72 9ef = 1.5 = 6.5/2 = 2 = 10 EN/n		+10 hat Top Place 152×89×16 UB
(Solud losm) grew = 2.5 x 3 = 7.5 EU/m.		us = 30 les
(Pool load) gue = 1.25 × 1 = 1.25 m/m 9 ce = 0.75 × 1 = 0.75 m/m		
Padston / 350 x 100 x 200 dp (C20)		

Martin Redston Associates	Date 07/11/14	Sheet No.
Consulting Civil & Structural Engineers	Eng. AeR	<i>I</i> 05
3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211	Job No. 14-647	Ţ
6 Hale Lane, London NW7 3NX	Epworth, Antrin	Road.
Tel: 020 8959 1666 Fax: 020 8906 8503	London Nu Charaeleshe & Design Le	Aebrans
Email: martine reastoriory	& Design Le	readings.
		∯ [®] y
(RS) = Som = 4500mm		
• (B8) - Spen = 4500mm		
187 = 114 @ 3400m.		52uc 30
(Now load) get = 06x 3/2 = 0.9 w/m		x = 31~
PBT = 2C = 19W @ 3400m. (flow load) get = 06x 3/2 = 0.9 w/m get = 1.5 x 3/2 = 2.25 w/m		= 18w.
Padshe & 350x100 x 2000(p (020)		
· (89) - Span= 2000 mm /mex) - (B4 Sim	ular)	
(Solid (08m) ger = 2.5 x 3 = 7.5 m)		
(Stud wall P) 965 = 0.523 = 15 w/n		
(floor load) get = 0.6x0.8 = 0.5 ml		
(floor load) get = 0.6 x 0.8 = 0.5 en/v		
W= 10.7 (2)	~	
-: Mi, en = 5:35 blim		- 100x
	1	40dp C.B.
		-,
	·	

	_	Date 15/01/15	Sheet No.
Martin Redston Associa		Eng. AoR	
Consulting Civil & Structural Engil 3 Edward Square, London N1 0SP		Job No. 14.647	T06
Tel: 020 7837 5377 Fax: 020 7837 3211	\boxtimes	Epsworth, Antro	
6 Hale Lane, London NW7 3NX Tel: 020 8959 1666 Fax: 020 8906 8503		4 Characteristic	Veu3 Antrue &
Email: martin@redston.org		Design le	rendings.
Finalused Scheme -	B7 (Crank frame) + additional Chin) Ciromal floor (Struc	ommitted ney. B support trine above)	
• (B8) - Spen = 4500m	m (reirsed)		
(Chimey) gran, g = 22.5 Brexel = 24 w	×0.3×5×0.7 (70%) Nm. @1200-450	0 mm ·	2030c46
· Padstrell 67x103x2	= 1565 = 120uly × 100	owd + 215 op (mcx)	lm = 41W lmcr = 69W
• (39) - Span = 2200m		•	
(Chimney) gehinig = 22.5 x 0	.3×8.6×0.7 = 41Wh	m @ 1200-2200m	: 152uc23
ladstone 150 x 100 x 10		V	mux = 43 W. m = 13 W.
· (85) - Span = 2800m	(roused)		
leading & Premos/Prehi		e.	152×87×16 UB
Pgy = 43 = Slw	@ 150m.	\	mu= 52 ev
· (810) - Span = 1000m	(m=x)		
$P_{85, \text{max}} = \frac{52}{1.4} = 37 \text{ m}$	@ 300m-		
(Solid bine) geblue = 5.1.	37=18.9 why		
10	c = 1.9m1)/m.		1520023
9ce = 075 x	S = 19wlm.	\	1ma = 56W
(floor load) gref = 0.6x 2 2 cf = 1.5x	1.5 x 2 = 1.8 m/m.		
Padstmell 450 x150 x 250	ф (cго).		

Martin Redston Associates	Date 11/05/15	Sheet No.
Consulting Civil & Structural Engineers	Eng. AoR	
3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211	Job No. 14 647	
6 Hele Leng Landon NW7 2NV	Epworth, A	Intrim Road
Tel: 020 8959 1666 Fax: 020 8906 8503	Londo, Characteris	stic Actions
Email: martin@redston.org	a Design	
Revised Finalised Scheme - Internal Stud-walls	(ALL)	
• (RI) - Spen = 1100mm Rooflight @ Roofle	nel.	· 2No. 50 x100/116)
gre = 0.75x 2/2 = 0.75 w/m gre = 0.75 w/m	•	: 2No. SoxIco(116) Vm== 1.2kN
• (22) - Spen = 1700mm.		· 2No. Saxlas
$P_{e1} = \frac{12}{14} = 0.9 \text{eV}$ (2) 350 m (3) 1250 m		· 2No. Soxloo (C16) Vmx = 2.1kV.
o (3) - height = 6000mm. Bearing as/for		
NEA = 67×2 = 138EN Myied = 69×0.2=		· Rox120x80
Pad footing (if log) 1 \ \frac{134}{100x14=0.97 1000		
• (134) \$ (89) - Span (mu) = 2200m (in Stud-wall -	1-6)	
(floor load) gref = 0.6 x 4/2 = 12 dul		" 2No. 50x200 (C24) Vm.= 6.8EU
° (P1) - height 2500m		
Ned = 6.8 w Mund = 6.8 x 0.	1'=0.68 EUm	-: 50x200 (C24) Post
· (B2) \$ (B6) bear onto new Columns & founds	tru.	
(A) - herght = 3000 mix	-	
NEW = 182 - 82 EN : Myrd = 82 . 0.2 - 1- Pad feetry 1 \ \frac{82}{1.9 × 100} = 0.77 : 80056 ×		120×120×6·3 SHS.
(C5) - height = 3000 ma		
Non = PBG = SOW : Muson = 30 x0.2 =	6EUm	190x90x40
Pad footy 1 Jan = 0.46 1 500 x 6	6ωφ(c3≤)	SHS.

Sheet No. Date 18/05/15 Martin Redston Associates AOR Eng. Consulting Civil & Structural Engineers IU8 Job No. 14-647 3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211 \square Epworth, Antrin Road 6 Hale Lane, London NW7 3NX London NW3 Tel: 020 8959 1666 Fax: 020 8906 8503 Charactitic Actions Email: martin@redston.org & Design loadings · (BII) - Spa = 3600m. (Chimney breast gehib = 22.5 x 0.35 x 7.5 Locard) = 25 ev/m. @ 1400-3600 (floor load) gut = 0 6x 3/2 = 0.9 km/m 2 kL = 1.5 x 3/2 = 2-25 kN/m. · (CB) - height = 3000mm NEd = 24 w : Myrod = 24 x 0.2 = 48 wm - 100×100×4-0 SHS. Pad footing if Reg. / 100 = 0.49 : Ecusa x 60000 (C35) . BS fensed & Cheek. > Ext. OK : C2 Revised & Check, > Exst. ok

	Date 06/07/15	Shoot No.
Martin Redston Associates	Eng. AoR	Sheet No.
Consulting Civil & Structural Engineers 3 Edward Square, London N1 0SP	Job No. 14-647	I09
Tel: 020 7837 5377 Fax: 020 7837 3211	Epworth, Antim	2 and
6 Hale Lane, London NW7 3NX Tel: 020 8959 1666 Fax: 020 8906 8503	London N	11000 WZ
Email: martin@redston.org	London N La Characteristic Design Ro	
	Jesigh Ra	aoungs
0 (73) - Span = Boomm		
(floor loading) get = 0.6 x 2.5/2 = 0.75 EN/m get = 1.5 x 2.5/2 = 1.90 EN/m		No Sox 200
(Stud-wall) gless = 0.5 x 2 = /el/m	N Vmex	No 5x200 (C16) In-leg. = 37W.
· (74) - Span = 3000m		
(floor loading) get = 0.6 x 0.4 = 0.24 ev/m get = 1.5 x 0.4 = 0.60 ev/m		
(Stud-war) green = 0.5 x 2 = /w/n @ 0-1000mm		2100 50 ×200 (C16)
(lout loud) gree = 125x 1/2 = 0.63 EN/m }@ 2xec = 0.75 x 1/2 = 0.38 EN/m }@	0-1000m Vnex	= 7.4w.
PT3 = 3.9 = 2.79 W @ 500 m		,
· (BII) - Additional Point Lord - Desyn Check		
174 = 5.3 w @ 1200m.		Juezonte
•		
		j
		·

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for T1				Start page no./Re	vision 1
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 2.096 kNm Design shear F = 3.494 kN

Total load on member $W_{tot} = 6.988 \text{ kN}$

Reactions at support A $R_{A_max} = 3.494 \text{ kN}$ $R_{A_min} = 3.494 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 1.255 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 1.200 \text{ kN}$

Reactions at support B $R_{B_max} = 3.494 \text{ kN}$ $R_{B_min} = 3.494 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 1.255 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 1.200 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 150 mmNumber of sections N = 2 Breadth of member $b_b = 100 \text{ mm}$

Timber strength class C16

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.349 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.015 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 5.590 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 7.385 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.521 \text{ N/mm}^2$ Permissible shear stress $f_{v.d} = 1.477 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{\text{lim}} = 9.600 \text{ mm}$ Total final deflection $\delta_{\text{fin}} = 5.806 \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for B5			Start page no./Re	vision 1	
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Vertically restrained Support A Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

 $M_{max} = 7.1 \text{ kNm}$ Maximum moment $M_{min} = \boldsymbol{0} \ kNm$ $V_{max} = 10.9 \text{ kN}$ $V_{min} = -10.9 \text{ kN}$ Maximum shear $\delta_{max} = 1 \text{ mm}$ Deflection $\delta_{\text{min}} = \textbf{0} \ mm$ $R_{A \text{ max}} = 10.9 \text{ kN}$ $R_{A_min} = 10.9 \text{ kN}$ Maximum reaction at support A

Unfactored permanent load reaction at support A $R_{A_Permanent} = 3.7 \text{ kN}$ $R_{A_Variable} = 3.9 \text{ kN}$

Unfactored variable load reaction at support A

Maximum reaction at support B $R_{B \text{ max}} = 10.9 \text{ kN}$ $R_B \min = 10.9 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 3.7 \text{ kN}$ Unfactored variable load reaction at support B R_{B_Variable} = **3.9** kN

Section details

UB 152x89x16 (BS4-1) Section type Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 11 \text{ kN}$ Design shear resistance $V_{c,Rd}=\textbf{129.8}\;kN$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 7.1 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 33.9 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.906$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = \textbf{0.400}$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b.Rd} = 26.4 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection δ_{lim} = **7.2** mm Maximum deflection δ = **1.019** mm

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for B6			Start page no./Re	vision 2	
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained Rotationally free
Support B Vertically restrained

Rotationally free

Analysis results

Maximum moment $M_{max} = 10.9 \text{ kNm}$ $M_{min} = 0 kNm$ Maximum moment span 1 segment 1 $M_{s1 \text{ seg1 min}} = 0 \text{ kNm}$ $M_{s1 \text{ seg1 max}} = 10.9 \text{ kNm}$ Maximum moment span 1 segment 2 $M_{s1_seg2_max} = 10.6 \text{ kNm}$ $M_{s1_seg2_min} = 0 \text{ kNm}$ $V_{min} = -26.6 \text{ kN}$ $V_{max} = 29.6 \text{ kN}$ Maximum shear Maximum shear span 1 segment 1 $V_{s1_seg1_max} = 29.6 \text{ kN}$ $V_{s1_seg1_min} = -3.8 \text{ kN}$ Maximum shear span 1 segment 2 $V_{s1_seg2_max} = 0 \text{ kN}$ $V_{s1 \text{ seg2 min}} = -26.6 \text{ kN}$

Deflection segment 3 $\delta_{\text{max}} = \textbf{0.1} \text{ mm} \\ \text{Maximum reaction at support A} \\ R_{A_\text{min}} = \textbf{29.6} \text{ kN} \\ R_{A_\text{min}} = \textbf{29.6} \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 18.3 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 3.3 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 26.6 \text{ kN}$ $R_{B_min} = 26.6 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 16.1 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 3.3 \text{ kN}$

Section details

Section type UB 152x89x16 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 30 \text{ kN}$ Design shear resistance $V_{c,Rd} = 129.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 10.9 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 33.9 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.541$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 32 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 3.9} \mbox{ mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 0.133} \mbox{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for	Calcs for				evision
B7 Simply Support			1	13	
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A R_{A_Permanent} = 23.7 kN

Maximum reaction at support B $R_{B max} = 32 \text{ kN}$ $R_{B min} = 32 \text{ kN}$

Unfactored permanent load reaction at support B R_{B_Permanent} = 23.7 kN

Section details

Section type UB 178x102x19 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 32 \text{ kN}$ Design shear resistance $V_{c,Rd} = 156.4 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 18.4 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 47.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 1.262$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 25.6 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 6.4 mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 0} \mbox{ mm}$

4 Edward Square
London
N1 0SP

ı	Project				Job no.	
	Eį	14.0	647			
•	Calcs for	В	8		Start page no./Re	vision 4
•	Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 7.3 \text{ kN}$

Unfactored variable load reaction at support A R_{A_variable} = **5.1** kN

Maximum reaction at support B $R_{B_max} = 30.6 \text{ kN}$ $R_{B_min} = 30.6 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 17 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 5.1 \text{ kN}$

Section details

Section type UC 152x152x30 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 31 \text{ kN}$ Design shear resistance $V_{c,Rd} = 183.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 30.6 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 68.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.779$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 58.2 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection $\delta_{lim} = 12.5 \text{ mm}$ Maximum deflection $\delta = 3.273 \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
E	oworth, Antrim R	Road London NV	/3	14.0	647
Calcs for				Start page no./Re	vision
B8 Revised			1	5	
Calcs by AOR	Calcs date 15/01/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 30.1 \text{ kN}$

Maximum reaction at support B $R_{B min} = 69.1 \text{ kN}$ $R_{B min} = 69.1 \text{ kN}$

Unfactored permanent load reaction at support B R_{B_Permanent} = **51.2** kN

Section details

Section type UC 203x203x46 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 69 \text{ kN}$ Design shear resistance $V_{c,Rd} = 269.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 72.3 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 136.8 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 1.050$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 91.5 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

 $\text{Limiting deflection} \qquad \qquad \delta_{\text{lim}} = \textbf{18} \text{ mm} \qquad \qquad \text{Maximum deflection} \qquad \qquad \delta = \textbf{11.446} \text{ mm}$

4 Edward Square London N1 0SP

ı	Project				Job no.	
	Epworth, Antrim Road London NW3					647
(Calcs for				Start page no./Re	vision
	В9			1	6	
(Calcs by AOR	Calcs date 15/01/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A R_{A Permanent} = **9.6** kN

Maximum reaction at support B $R_{B min} = 43.1 \text{ kN}$ $R_{B min} = 43.1 \text{ kN}$

Unfactored permanent load reaction at support B R_{B_Permanent} = **31.9** kN

Section details

Section type UC 152x152x23 (BS4-1) Steel grade S275

Section classification Class 3

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 43 \text{ kN}$ Design shear resistance $V_{c,Rd} = 129.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 16.7 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 45.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.752$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 38 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 8.8 mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 2.085 mm}$

4 Edward Square London N1 0SP

Project				Job no.	
	Epworth, Antrim F	14	.647		
Calcs for				Start page no./R	evision
	B5 Revised				16
Calcs by AOR	Calcs date 15/01/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

 $R_{A_Permanent} = 33.3 \text{ kN}$ $R_{A_Variable} = 4.2 \text{ kN}$

Analysis results

Unfactored permanent load reaction at support A

Unfactored variable load reaction at support A

Maximum reaction at support B $R_{B_{max}} = 13.9 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 5.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 4.2 \text{ kN}$

Section details

Section type UB 152x89x16 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 51 \text{ kN}$ Design shear resistance $V_{c,Rd} = 129.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

 $R_{B_min} = 13.9 \text{ kN}$

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 11.6 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 33.9 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 1.518$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 14.2 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection $\delta_{lim} = 11.2 \text{ mm}$ Maximum deflection $\delta = 3.987 \text{ mm}$

Martin Redston Associates

4 Edward Square

London
N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for	B	10		Start page no./Re	vision 8
Calcs by AOR	Calcs date 15/01/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Maximum moment $M_{max} = 14.9 \text{ kNm}$ $M_{min} = 0 \text{ kNm}$

Maximum moment span 1 segment 1 $M_{s1_seg1_max} = 14.9 \text{ kNm}$ $M_{s1_seg1_min} = 0 \text{ kNm}$ Maximum moment span 1 segment 2 $M_{s1_seg2_max} = 12.7 \text{ kNm}$ $M_{s1_seg2_min} = 0 \text{ kNm}$

Maximum shear $V_{max} = 55.8 \text{ kN} \qquad V_{min} = -35.8 \text{ kN}$ Maximum shear span 1 segment 1 $V_{s1_seg1_max} = 55.8 \text{ kN} \qquad V_{s1_seg1_min} = -15 \text{ kN}$ Maximum shear span 1 segment 2 $V_{s1_seg2_max} = 0 \text{ kN} \qquad V_{s1_seg2_min} = -35.8 \text{ kN}$

Deflection segment 3 $\delta_{\text{max}} = \textbf{0.4} \text{ mm} \\ \delta_{\text{min}} = \textbf{0} \text{ mm} \\ \delta_{\text{min}} = \textbf{55.8} \text{ kN} \\ \delta_{\text{min}} = \textbf{55$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 37.3 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 3.6 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 35.8 \text{ kN}$ $R_{B_min} = 35.8 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 22.5 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 3.6 \text{ kN}$

Section details

Section type UC 152x152x23 (BS4-1) Steel grade S275

Section classification Class 3

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 56 \text{ kN}$ Design shear resistance $V_{c,Rd} = 129.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 14.9 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 45.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.204$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} < \overline{\lambda}_{LT,0}$ - Lateral torsional buckling can be ignored

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection $\delta_{lim} = 4 \text{ mm}$ Maximum deflection $\delta = 0.384 \text{ mm}$

4 Edward Square
London
N1 0SP

Project				Job no.	
	Epworth, Antrim F	14.	647		
Calcs for				Start page no./Re	evision
	R1			•	19
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 0.330 kNm Design shear F = 1.198 kN

Total load on member $W_{tot} = 2.396 \text{ kN}$

Reactions at support A $R_{A_max} = 1.198 \text{ kN}$ $R_{A_min} = 1.198 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 0.429 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 0.413 \text{ kN}$

Reactions at support B $R_{B_max} = 1.198 \text{ kN}$ $R_{B_min} = 1.198 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 0.429 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 0.413 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 100 mmNumber of sections N = 2 Breadth of member $b_b = 100 \text{ mm}$

Timber strength class C16

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.120 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.015 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 1.977 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 8.008 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.268 \text{ N/mm}^2$ Permissible shear stress $f_{v,d} = 1.477 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{lim} = 4.400 \text{ mm}$ Total final deflection $\delta_{fin} = 0.688 \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14	.647
Calcs for	7	⁻ 2		Start page no./R	evision 2
Calcs by	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 4.005 kNm Design shear F = 5.150 kN

Total load on member $W_{tot} = 10.107 \text{ kN}$

Reactions at support A $R_{A_max} = 5.150 \text{ kN}$ $R_{A_min} = 5.150 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 3.232 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 0.525 \text{ kN}$

Reactions at support B $R_{B_max} = 4.957 \text{ kN}$ $R_{B_min} = 4.957 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 3.089 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 0.525 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 150 mmNumber of sections N = 3 Breadth of member $b_b = 150 \text{ mm}$

Timber strength class C24

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.343 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.154 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m,d} = 7.120 \text{ N/mm}^2$ Design bending strength $f_{m,d} = 11.077 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.512 \text{ N/mm}^2$ Permissible shear stress $f_{v,d} = 1.846 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{\text{lim}} =$ **14.000** mm Total final deflection $\delta_{\text{fin}} =$ **13.663** mm

4 Edward Square London N1 0SP

Project				Job no.	
	Epworth, Antrim F	14.	647		
Calcs for	_	20		Start page no./Re	
	R2			2	20
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 0.813 kNm Design shear F = 2.048 kN

Total load on member $W_{tot} = 3.953 \text{ kN}$

Reactions at support A $R_{A_max} = 2.048 \text{ kN}$ $R_{A_min} = 2.048 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 1.234 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 0.255 \text{ kN}$

Reactions at support B $R_{B_max} = 1.905 \text{ kN}$ $R_{B_min} = 1.905 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 1.128 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 0.255 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 100 mmNumber of sections N = 2 Breadth of member $b_b = 100 \text{ mm}$

Timber strength class C16

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.205 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.015 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 4.875 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 8.008 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.459 \text{ N/mm}^2$ Permissible shear stress $f_{v,d} = 1.477 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{\text{lim}} = 6.800 \text{ mm}$ Total final deflection $\delta_{\text{fin}} = 4.536 \text{ mm}$

Todds	a

4 Edward Square London N1 0SP

Project				Job no.	
E	pworth, Antrim F	14.0	647		
Calcs for				Start page no./Re	vision
	C3			2	21
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section SHS 120x120x8.0

System length y axis buckling $L_y = 6000$ mm System length z axis buckling $L_z = 6000$ mm

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 138 \text{ kN} \text{ (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 14.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 14.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Yield strength $f_y = 275 \text{ N/mm}^2$ Ultimate strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$ Shear modulus $G = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 6000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr} z = 6000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 279.1 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project				Job no.	
E	oworth, Antrim F	load London NW	/3	14.0	647
Calcs for				Start page no./Re	vision
	С	3		2	22
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_v required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 279.1 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 138 \text{ kN}$ Design resistance $N_{c,Rd} = 967 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{y,Ed} = 14.0 \text{ kNm}$ Design resistance $M_{c,y,Rd} = 40.3 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 40.3 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment $M_{y,Ed} = 14.0 \text{ kNm}$ Modified design resistance $M_{N,y,Rd} = 40.3 \text{ kNm}$

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 40.3 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.168$ Section utilisation at end 2 $UR_{CS 2} = 0.168$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y N_{b,y,Rd} = **351.8** kN Flexural buck resist about z N_{b,z,Rd} = **351.8** kN

Min. buckling resistance $N_{b,Rd} = 351.8 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 14.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 40.3$ kNm

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_1} = 0.869$ Section utilisation $UR_{B_2} = 0.699$

PASS - The buckling resistance is adequate

4 Edward Square London N1 0SP

Project				Job no.	
	Epworth, Antrim F	14.	.647		
Calcs for				Start page no./Re	evision
	B4, B9 revised to timber			:	23
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 3.759 kNm Design shear F = 6.834 kN

Total load on member $W_{tot} = 13.668 \text{ kN}$

Reactions at support A $R_{A_max} = 6.834 \text{ kN}$ $R_{A_min} = 6.834 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 1.396 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 3.300 \text{ kN}$

Reactions at support B $R_{B_max} = 6.834 \text{ kN}$ $R_{B_min} = 6.834 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 1.396 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 3.300 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 200 mmNumber of sections N = 2 Breadth of member $b_b = 100 \text{ mm}$

Timber strength class C24

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.683 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.154 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 5.638 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 11.077 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.765 \text{ N/mm}^2$ Permissible shear stress $f_{v.d} = 1.846 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{\text{lim}} = 8.800 \text{ mm}$ Total final deflection $\delta_{\text{fin}} = 2.610 \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.647	
Calcs for P1				Start page no./Revision 24	
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

Timber member designTimber member designTimber member designTIMBER MEMBER DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

 $\begin{array}{ll} \text{Design moment in major axis} & \text{$M_y = 1.400 \text{ kNm}$} \\ \text{Design moment in minor axis} & \text{$M_z = 1.400 \text{ kNm}$} \\ \text{Design shear} & \text{$F = 1.000 \text{ kN}$} \\ \text{Maximum reaction} & \text{$R = 6.800 \text{ kN}$} \\ \end{array}$

Timber section details

Breadth of timber sections b = 50 mmDepth of timber sections h = 200 mm

Number of timber sections in member N = 2

Overall breadth of timber member $b_b = N \times b = \textbf{100} \text{ mm}$

Timber strength class - EN 338:2009 Table 1 C24

Member details

Load duration - cl.2.3.1.2 Permanent

Service class of timber - cl.2.3.1.3

Length of bearing $L_b = 100 \text{ mm}$

Section properties

Cross sectional area of member $A = N \times b \times h = 20000 \text{ mm}^2$

Section modulus $W_y = N \times b \times h^2 / 6 = 666667 \text{ mm}^3$

 $W_z = h \times (N \times b)^2 / 6 = 333333 \text{ mm}^3$

Second moment of area $I_y = N \times b \times h^3 / 12 = 66666667 \text{ mm}^4$

 $I_z = h \times (N \times b)^3 / 12 =$ **16666667** mm⁴

Radius of gyration $r_y = \sqrt{(I_y / A)} = \textbf{57.7} \text{ mm}$

 $r_z = \sqrt{(I_z / A)} = 28.9 \text{ mm}$

Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 $\gamma_M = 1.300$

Modification factors

Modification factor for load duration and moisture content - Table 3.1

 $k_{mod} = 0.600$

 $\begin{array}{ll} \mbox{Deformation factor for service classes - Table 3.2} & k_{def} = \textbf{0.600} \\ \mbox{Depth factor for bending - exp.3.1} & k_{h.m} = \textbf{1.000} \\ \mbox{Depth factor for tension - exp.3.1} & k_{h.t} = \textbf{1.000} \\ \end{array}$

Ted	ds

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3			14.	647	
Calcs for				Start page no./Re	evision
P1			2	25	
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

 $\begin{array}{lll} \mbox{Bending stress re-distribution factor - cl.6.1.6(2)} & \mbox{$k_m = 0.700$} \\ \mbox{Crack factor for shear resistance - cl.6.1.7(2)} & \mbox{$k_{cr} = 0.670$} \\ \mbox{Load configuration factor - exp.6.4} & \mbox{$k_{c.90} = 1.000$} \\ \mbox{System strength factor - cl.6.6} & \mbox{$k_{sys} = 1.000$} \end{array}$

Effective length - Table 6.1 $L_{ef} = 1.0 \times L_{s} = 4000 \text{ mm}$

Critical bending stress - exp.6.32 $\sigma_{m.crit} = 0.78 \times (N \times b)^2 \times E_{0.05} / (h \times L_{ef}) = 72.150 \text{ N/mm}^2$

Relative slenderness for bending - exp.6.30 $\lambda_{\text{rel.m}} = \sqrt{[f_{\text{m.k}} \, / \, \sigma_{\text{m.crit}}]} = \textbf{0.577}$

Lateral buckling factor - exp.6.34 $k_{crit} = 1.000$

Compression perpendicular to the grain - cl.6.1.5

Design compressive stress $\sigma_{c.90.d} = R / (N \times b \times L_b) = \textbf{0.680} \text{ N/mm}^2$

Design compressive strength $f_{\text{c.90.d}} = k_{\text{mod}} \times k_{\text{sys}} \times k_{\text{c.90}} \times f_{\text{c.90.k}} \ / \ \gamma_{\text{M}} = \textbf{1.154} \ \text{N/mm}^2$

 $\sigma_{c.90.d} / f_{c.90.d} = 0.589$

PASS - Design compressive strength exceeds design compressive stress at bearing

Biaxial bending - cl 6.1.6

Design bending stress in major (y-y) axis $\sigma_{m.y.d} = M_y / W_y = 2.100 \text{ N/mm}^2$ Design bending stress in minor (z-z) axis $\sigma_{m.z.d} = M_z / W_z = 4.200 \text{ N/mm}^2$

Design bending strength $f_{m.d} = k_{h.m} \times k_{mod} \times k_{sys} \times k_{crit} \times f_{m.k} / \gamma_M = 11.077 \text{ N/mm}^2$

 $Combined \ bending \ checks - eq.6.11 \ \& \ eq.6.12 \\ \sigma_{m.y.d} \ / \ f_{m.d} + k_m \times \sigma_{m.z.d} \ / \ f_{m.d} = \textbf{0.455}$

 $k_m \times \sigma_{m.y.d} \: / \: f_{m.d} \: + \: \sigma_{m.z.d} \: / \: f_{m.d} \: = \: \textbf{0.512}$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_{d} = 3 \times F / (2 \times k_{cr} \times A) = \textbf{0.112 N/mm}^{2}$ Permissible shear stress $f_{v.d} = k_{mod} \times k_{sys} \times f_{v.k} / \gamma_{M} = \textbf{1.846 N/mm}^{2}$

 $\tau_d / f_{v.d} = 0.061$

PASS - Design shear strength exceeds design shear stress

Todds	a

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3			14.6	647	
Calcs for			Start page no./Re	vision	
C4			2	16	
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section SHS 120x120x6.3

System length y axis buckling $L_y = 3000 \text{ mm}$ System length z axis buckling $L_z = 3000 \text{ mm}$

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 82 \text{ kN} \text{ (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 17.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 17.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 3000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr_z} = 3000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 224.1 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3			14.0	647	
Calcs for C4			Start page no./Re	vision 27	
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_y required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 224.1 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 82 \text{ kN}$ Design resistance $N_{c,Rd} = 776 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment M_{y,Ed} = **17.0** kNm Design resistance M_{c,y,Rd} = **32.9** kNm

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 32.9 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment M_{V,Ed} = **17.0** kNm Modified design resistance M_{N,V,Rd} = **32.9** kNm

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 32.9 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.332$ Section utilisation at end 2 $UR_{CS 2} = 0.332$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y $N_{b,y,Rd} = 639.8 \text{ kN}$ Flexural buck resist about z $N_{b,z,Rd} = 639.8 \text{ kN}$

Min. buckling resistance $N_{b,Rd} = 639.8 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 17.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 32.9$ kNm

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_1} = 0.701$ Section utilisation $UR_{B_2} = 0.493$

PASS - The buckling resistance is adequate

	N
Ted	ds'

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for				Start page no./Re	vision
C5				2	28
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section SHS 90x90x4.0

System length y axis buckling $L_y = 3000$ mm System length z axis buckling $L_z = 3000$ mm

Sway

The column is not part of a sway frame in the direction of the z axis. The column is not part of a sway frame in the direction of the y axis.

Column loading

Axial load $N_{Ed} = 30 \text{ kN} \text{ (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 6.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 6.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Yield strength $f_y = 275 \text{ N/mm}^2$ Ultimate strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$ Shear modulus $G = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 3000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr} z = 3000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 107.9 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3			14.0	647	
Calcs for C5			Start page no./Re	vision 29	
Calcs by AOR	Calcs date 11/05/2015	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_y required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 107.9 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 30 \text{ kN}$ Design resistance $N_{c,Rd} = 374 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{y,Ed} = 6.0 \text{ kNm}$ Design resistance $M_{c,y,Rd} = 12.0 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 12.0 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment $M_{V,Ed} = 6.0 \text{ kNm}$ Modified design resistance $M_{N,V,Rd} = 12.0 \text{ kNm}$

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 12.0 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.330$ Section utilisation at end 2 $UR_{CS 2} = 0.330$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y N_{b,y,Rd} = **251.9** kN Flexural buck resist about z N_{b,z,Rd} = **251.9** kN

Min. buckling resistance $N_{b,Rd} = 251.9 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 6.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 12.0 \text{ kNm}$

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_{-1}} = 0.721$ Section utilisation $UR_{B_{-2}} = 0.539$

PASS - The buckling resistance is adequate

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3			14	.647	
Calcs for				Start page no./R	evision
B1				3	
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

 $R_{A_Permanent} = \textbf{32.1} \ kN$

 $R_{B_Permanent} = 31.9 \text{ kN}$

Steel grade

R_A variable = 7.1 kN

 $R_{B \text{ max}} = 53.7 \text{ kN}$

 $R_{B\ Variable} = 7.1\ kN$

Analysis results

Unfactored permanent load reaction at support A

Unfactored variable load reaction at support A

Maximum reaction at support B

Unfactored permanent load reaction at support B

Unfactored variable load reaction at support B

Section details

Section type UC 152x152x37

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 54 \text{ kN}$ Design shear resistance $V_{c,Rd} = 226.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

 $R_{B_min} = \textbf{53.7} \ kN$

S275

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 53.8 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 84.9 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection δ_{lim} = 11.4 mm Maximum deflection δ = 2.735 mm

4 Edward Square London N1 0SP

Project				Job no.		
Epworth, Antrim Road London NW3			14.	647		
Calcs for				Start page no./Re	Start page no./Revision	
	B11				30	
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date	

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A R_{A_Permanent} = 17.3 kN

Maximum reaction at support B $R_{B min} = 52.3 \text{ kN}$ $R_{B min} = 52.3 \text{ kN}$

Unfactored permanent load reaction at support B R_{B_Permanent} = **38.7** kN

Section details

Section type UC 152x152x30 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 52 \text{ kN}$ Design shear resistance $V_{c,Rd} = 183.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 40 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 68.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 1.073$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 44.6 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection $\delta_{lim} = 14.4 \text{ mm}$ Maximum deflection $\delta = 10.24 \text{ mm}$

Todds	a

4 Edward Square London N1 0SP

Project				Job no.		
Epworth, Antrim Road London NW3				14.647		
Calcs for	Calcs for				Start page no./Revision	
	C6 Worst case				31	
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date	

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section SHS 100x100x4.0

System length y axis buckling $L_y = 6000$ mm System length z axis buckling $L_z = 6000$ mm

Sway

The column is not part of a sway frame in the direction of the z axis. The column is not part of a sway frame in the direction of the y axis.

Column loading

Axial load $N_{Ed} = 24 \text{ kN} \text{ (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 5.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 5.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Yield strength $f_y = 275 \text{ N/mm}^2$ Ultimate strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$ Shear modulus $G = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 6000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr} z = 6000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 120.6 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project	oject				Job no.	
E	Epworth, Antrim Road London NW3				647	
Calcs for				Start page no./Re	vision	
	C6 Worst case			32		
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date	

 $V_{z,Ed} \leftarrow 0.5 \times V_{p,z,Rd}$ - No reduction in f_y required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 120.6 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 24 \text{ kN}$ Design resistance $N_{c,Rd} = 418 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{y,Ed} = 5.0 \text{ kNm}$ Design resistance $M_{c,y,Rd} = 15.0 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 15.0 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment $M_{V,Ed} = 5.0 \text{ kNm}$ Modified design resistance $M_{N,v,Rd} = 15.0 \text{ kNm}$

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 15.0 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.172$ Section utilisation at end 2 $UR_{CS 2} = 0.172$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y $N_{b,y,Rd} = 116.5 \text{ kN}$ Flexural buck resist about z $N_{b,z,Rd} = 116.5 \text{ kN}$

Min. buckling resistance $N_{b,Rd} = 116.5 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 5.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 15.0$ kNm

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_{-1}} = 0.642$ Section utilisation $UR_{B_{-2}} = 0.517$

PASS - The buckling resistance is adequate

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.647	
Calcs for				Start page no./Revision	
B3 Revised				33	
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Maximum moment $M_{max} = 273.7 \text{ kNm}$ $M_{min} = 0 \text{ kNm}$

Maximum shear span 1 segment 2 $V_{s1_seg2_max} = 44.6 \text{ kN}$ $V_{s1_seg2_min} = 0 \text{ kN}$

Deflection segment 3 $\delta_{max} = 19.7 \text{ mm}$ $\delta_{min} = 0 \text{ mm}$

Maximum reaction at support A $R_{A_max} = 118.7 \text{ kN}$ $R_{A_min} = 118.7 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 63.8 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 21.8 \text{ kN}$

Maximum reaction at support B $R_{B max} = 149.5 \text{ kN}$ $R_{B min} = 149.5 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 82.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 25.3 \text{ kN}$

Section details

Section type UC 254x254x107 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 150 \text{ kN}$ Design shear resistance $V_{c,Rd} = 583 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 273.7 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 393.4 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.652$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 351.3 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

 $\text{Limiting deflection} \qquad \qquad \delta_{\text{lim}} = \textbf{25.6} \text{ mm} \qquad \qquad \text{Maximum deflection} \qquad \qquad \delta = \textbf{19.674} \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for		Start page no./Re	vision		
	C2 Revised				34
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section UC 203x203x46

System length y axis buckling $L_y = 3000$ mm System length z axis buckling $L_z = 3000$ mm

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 150 \text{ kN (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 24.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 24.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Yield strength $f_y = 275 \text{ N/mm}^2$ Ultimate strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$ Shear modulus $G = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 3000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr,z} = 3000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 269.5 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for C2 Revised				Start page no./Re	vision 85
Calcs by AOR	Calcs date 18/05/2015	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_v required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 663.0 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 150 \text{ kN}$ Design resistance $N_{c,Rd} = 1615 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{V,Ed} = 24.0 \text{ kNm}$ Design resistance $M_{c,V,Rd} = 136.8 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 63.5 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment $M_{V,Ed} = 24.0 \text{ kNm}$ Modified design resistance $M_{N,V,Rd} = 136.8 \text{ kNm}$

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 63.5 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.047$ Section utilisation at end 2 $UR_{CS 2} = 0.047$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y $N_{b,y,Rd} = 1500.9 \text{ kN}$ Flexural buck resist about z $N_{b,z,Rd} = 1197.3 \text{ kN}$ Torsional buck. length factor $K_T = 1.00$ Torsional/tor flex buck resist $N_{b,T,Rd} = 1292.0 \text{ kN}$

Min. buckling resistance $N_{b,Rd} = 1197.3 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 24.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 130.7$ kNm

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_{-1}} = 0.297$ Section utilisation $UR_{B_{-2}} = 0.324$

PASS - The buckling resistance is adequate

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for	Start page no./Revision 36				
Calcs by Calcs date Checked by Checked date AOR 06/07/2015				Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 1.478 kNm Design shear F = 3.940 kN

Total load on member $W_{tot} = 7.880 \text{ kN}$

Reactions at support A $R_{A_max} = 3.940 \text{ kN}$ $R_{A_min} = 3.940 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 1.335 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 1.425 \text{ kN}$

Reactions at support B $R_{B_max} = 3.940 \text{ kN}$ $R_{B_min} = 3.940 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 1.335 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 1.425 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 200 mmNumber of sections N = 1 Breadth of member $b_b = 50 \text{ mm}$

Timber strength class C16

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.788 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.015 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 4.433 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 7.385 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.882 \text{ N/mm}^2$ Permissible shear stress $f_{v,d} = 1.477 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{\text{lim}} = 6.000 \text{ mm}$ Total final deflection $\delta_{\text{fin}} = 1.602 \text{ mm}$

PASS - Total final deflection is less than the deflection limit

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.6	647
Calcs for T4				Start page no./Re	vision 7
Calcs by AOR	Calcs date 06/07/2015	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A1:2008 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

TEDDS calculation version 1.5.08

Analysis results

Design moment M = 3.508 kNm Design shear F = 7.407 kN

Total load on member $W_{tot} = 10.455 \text{ kN}$

Reactions at support A $R_{A_max} = 7.407 \text{ kN}$ $R_{A_min} = 7.407 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 4.135 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_variable} = 1.217 \text{ kN}$

Reactions at support B $R_{B_max} = 3.049 \text{ kN}$ $R_{B_min} = 3.049 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 1.188 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 0.963 \text{ kN}$

Timber section details

Breadth of section b = 50 mm Depth of section h = 200 mmNumber of sections N = 2 Breadth of member $b_b = 100 \text{ mm}$

Timber strength class C16

Member details

Service class of timber 1 Load duration Permanent

Length of bearing $L_b = 100 \text{ mm}$

Compression perpendicular to grain - cl.6.1.4

Design compressive stress $\sigma_{c.90.d} = 0.741 \text{ N/mm}^2$ Design compressive strength $f_{c.90.d} = 1.015 \text{ N/mm}^2$

PASS - Design compressive strength exceeds design compressive stress at bearing

Bending - cl 6.1.6

Design bending stress $\sigma_{m.d} = 5.263 \text{ N/mm}^2$ Design bending strength $f_{m.d} = 7.385 \text{ N/mm}^2$

PASS - Design bending strength exceeds design bending stress

Shear - cl.6.1.7

Applied shear stress $\tau_d = 0.829 \text{ N/mm}^2$ Permissible shear stress $f_{v,d} = 1.477 \text{ N/mm}^2$

PASS - Design shear strength exceeds design shear stress

Deflection - cl.7.2

Deflection limit $\delta_{lim} = 12.000 \text{ mm}$ Total final deflection $\delta_{fin} = 6.634 \text{ mm}$

PASS - Total final deflection is less than the deflection limit

4 Edward Square
London
N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for		Start page no./Revision			
	B11 Revised				38
Calcs by AOR	Calcs date 06/07/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 20.9 \text{ kN}$

Maximum reaction at support B $R_{B min} = 54.7 \text{ kN}$ $R_{B min} = 54.7 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 40.5 \text{ kN}$

Section details

Section type UC 152x152x30 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 55 \text{ kN}$ Design shear resistance $V_{c,Rd} = 183.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 43.8 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 68.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 1.073$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 44.6 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{lim}} = \mbox{14.4 mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{11.422 mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for		Start page no./Revision			
	B2				4
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained
Rotationally free
Support B Vertically restrained

Rotationally free

Analysis results

 $\begin{array}{lll} \text{Deflection segment 3} & \delta_{\text{max}} = \textbf{2.3} \text{ mm} & \delta_{\text{min}} = \textbf{0} \text{ mm} \\ \text{Maximum reaction at support A} & R_{A_\text{max}} = \textbf{82} \text{ kN} & R_{A_\text{min}} = \textbf{82} \text{ kN} \end{array}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 38.4 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 20.1 \text{ kN}$

Maximum reaction at support B $R_{B_{max}} = 82 \text{ kN}$ $R_{B_{min}} = 82 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 38.4 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 20.1 \text{ kN}$

Section details

Section type UC 203x203x46 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 82 \text{ kN}$ Design shear resistance $V_{c,Rd} = 269.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 71.8 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 136.8 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.521$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 130.1 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 9.7 mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 2.343 mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for		Start page no./Revision			
	L	.1		!	5
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained Rotationally free

Vertically restrained Rotationally free

Analysis results

Support B

Maximum moment $M_{max} = 113.9 \text{ kNm}$ $M_{min} = 0 kNm$ Maximum moment span 1 segment 1 $M_{s1 \ seq1 \ max} = 104.3 \ kNm$ $M_{s1 \text{ seq1 min}} = 0 \text{ kNm}$ Maximum moment span 1 segment 2 $M_{s1_seg2_max} = 113.9 \text{ kNm}$ $M_{s1_seg2_min} = 0 \text{ kNm}$ $V_{min} = -48.8 \text{ kN}$ $V_{max} = 41.5 \text{ kN}$ Maximum shear Maximum shear span 1 segment 1 $V_{s1_seg1_max} = 41.5 \text{ kN}$ $V_{s1_seg1_min} = 0 \ kN$ Maximum shear span 1 segment 2 $V_{s1 \text{ seg2 max}} = 22.7 \text{ kN}$ $V_{s1_seg2_min} = -48.8 \text{ kN}$

Deflection segment 3 $\delta_{\text{max}} = \textbf{0.7} \text{ mm} \\ \delta_{\text{min}} = \textbf{0} \text{ mm} \\ \delta_{\text{min}} = \textbf{41.5} \text{ kN} \\ \delta_{\text{min}} = \textbf{41.5} \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 29.6 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 1 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 48.8 \text{ kN}$ $R_{B_min} = 48.8 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 35 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 1 \text{ kN}$

Section details

Section type UC 203x203x46 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 49 \text{ kN}$ Design shear resistance $V_{c,Rd} = 269.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 113.9 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 136.8 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.462$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 136.8 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 18.1} \mbox{ mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 0.727} \mbox{ mm}$

	N
Ted	ds'

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for		Start page no./Re	vision		
C1				(6
Calcs by Calcs date Checked by Checked date AOR 07/11/2014				Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section SHS 100x100x6.3

System length y axis buckling $L_y = 3000$ mm System length z axis buckling $L_z = 3000$ mm

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 50 \text{ kN (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 10.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 10.0 \text{ kNm}$

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade **S275**

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr,y} = 3000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr_z} = 3000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 184.1 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square
London
N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.0	647
Calcs for C1				Start page no./Re	vision 7
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_v required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 184.1 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 50 \text{ kN}$ Design resistance $N_{c,Rd} = 638 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{y,Ed} = 10.0 \text{ kNm}$ Design resistance $M_{c,y,Rd} = 22.2 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 22.2 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment M_{V,Ed} = **10.0** kNm Modified design resistance M_{N,V,Rd} = **22.2** kNm

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 22.2 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.269$ Section utilisation at end 2 $UR_{CS 2} = 0.269$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y $N_{b,y,Rd} = 464.5 \text{ kN}$ Flexural buck resist about z $N_{b,z,Rd} = 464.5 \text{ kN}$

Min. buckling resistance $N_{b,Rd} = 464.5 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 10.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 22.2 \text{ kNm}$

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_1} = 0.621$ Section utilisation $UR_{B_2} = 0.446$

PASS - The buckling resistance is adequate

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for	Start page no./Re	vision			
	1	8			
Calcs by AOR	Calcs date 03/05/2015	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.10

Support conditions

Support A Vertically restrained
Rotationally free

Support B Vertically restrained

Rotationally free

Analysis results

Maximum moment $M_{max} = 270.9 \text{ kNm}$ $M_{min} = 0 \text{ kNm}$

Maximum moment span 1 segment 1 $M_{s1_seg1_max} = 258.8 \text{ kNm}$ $M_{s1_seg1_min} = 0 \text{ kNm}$ Maximum moment span 1 segment 2 $M_{s1_seg2_max} = 270.9 \text{ kNm}$ $M_{s1_seg2_min} = 0 \text{ kNm}$

Deflection segment 3 $\delta_{\text{max}} = \textbf{19.4} \text{ mm} \qquad \qquad \delta_{\text{min}} = \textbf{0} \text{ mm}$

Maximum reaction at support A $R_{A_max} = 117.9 \text{ kN}$ $R_{A_min} = 117.9 \text{ kN}$

Unfactored permanent load reaction at support A $R_{A_Permanent} = 63.2 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 21.8 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 99 \text{ kN}$ $R_{B_min} = 99 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 45.3 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 25.3 \text{ kN}$

Section details

Section type UC 254x254x107 (BS4-1) Steel grade S275

Section classification Class 1

Check shear - Section 6.2.6

Design shear force $V_{Ed} = 118 \text{ kN}$ Design shear resistance $V_{c,Rd} = 583 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{Ed} = 270.9 \text{ kNm}$ Des.bending resist.moment $M_{c,Rd} = 393.4 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

LTB slenderness ratio $\overline{\lambda}_{LT} = 0.652$ Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.400$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Des.buckling resist.moment $M_{b,Rd} = 351.3 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection $\delta_{lim} = 25.6 \text{ mm}$ Maximum deflection $\delta = 19.41 \text{ mm}$

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.	647
Calcs for		Start page no./Re	vision		
	C2				9
Calcs by Calcs date Checked by Checked date AOR 07/11/2014 Checked by				Approved by	Approved date

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.09

Column and loading details

Column details

Column section RHS 150x100x6.3

System length y axis buckling $L_y = 3000 \text{ mm}$ System length z axis buckling $L_z = 3000 \text{ mm}$

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 120 \text{ kN (Compression)}$

Moment about y axis at end 1 M_{y,Ed1} = **24.0** kNm Moment about y axis at end 2 M_{y,Ed2} = **24.0** kNm

Single curvature bending about y axis

Moment about z axis at end 1 $M_{z,Ed1} = 1.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 1.0 \text{ kNm}$

Single curvature bending about z axis

Shear force parallel to z axis $V_{z,Ed} = 1 \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = 1 \text{ kN}$

Material details

Steel grade \$275

Yield strength $f_y = 275 \text{ N/mm}^2$ Ultimate strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$ Shear modulus $G = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$ Buckling length $L_{cr_y} = 3000$ mm

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$ Buckling length $L_{cr,z} = 3000$ mm

Section classification (Table 5.2)

Web classification 1 Flange classification 1

The section is class 1

Resistance of cross section (cl. 6.2)

Shear parallel to z axis (cl. 6.2.6)

Design shear force $V_{z,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,z,Rd} = 280.9 \text{ kN}$

PASS - Shear resistance parallel to z axis exceeds the design shear force

4 Edward Square London N1 0SP

Project				Job no.	
Epworth, Antrim Road London NW3				14.647	
Calcs for	llcs for C2			Start page no./Revision 10	
Calcs by AOR	Calcs date 07/11/2014	Checked by	Checked date	Approved by	Approved date

 $V_{z,Ed} \leftarrow 0.5 \times V_{pl,z,Rd}$ - No reduction in f_y required for bending/axial force

Shear parallel to y axis (cl. 6.2.6)

Design shear force $V_{y,Ed} = 1.0 \text{ kN}$ Plastic shear resistance $V_{pl,y,Rd} = 187.3 \text{ kN}$

PASS - Shear resistance parallel to y axis exceeds the design shear force

 $V_{y,Ed} \leftarrow 0.5 \times V_{pl,y,Rd}$ - No reduction in f_y required for bending/axial force

Compression (cl. 6.2.4)

Design force $N_{Ed} = 120 \text{ kN}$ Design resistance $N_{c,Rd} = 811 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Bending about y axis (cl. 6.2.5)

Design bending moment $M_{y,Ed} = 24.0 \text{ kNm}$ Design resistance $M_{c,y,Rd} = 40.3 \text{ kNm}$

PASS - The bending design resistance about the y axis exceeds the design moment

Bending about z axis (cl. 6.2.5)

Design bending moment $M_{c,Ed} = 1.0 \text{ kNm}$ Design resistance $M_{c,z,Rd} = 30.4 \text{ kNm}$

PASS - The bending design resistance about the z axis exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Bending about y axis (cl. 6.2.9.1)

Design bending moment M_{y,Ed} = **24.0** kNm Modified design resistance M_{N,y,Rd} = **40.3** kNm

PASS - Bending resistance about y axis in presence of axial load exceeds design moment

Bending about z axis (cl. 6.2.9.1)

Design bending moment $M_{z,Ed} = 1.0 \text{ kNm}$ Modified design resistance $M_{N,z,Rd} = 30.4 \text{ kNm}$

PASS - Bending resistance about z axis in presence of axial load exceeds design moment

Biaxial bending

Section utilisation at end 1 $UR_{CS 1} = 0.416$ Section utilisation at end 2 $UR_{CS 2} = 0.416$

PASS - The cross-section resistance is adequate

Buckling resistance (cl. 6.3)

Axial buckling resistance

Flexural buck resist about y N_{b,y,Rd} = **713.4** kN Flexural buck resist about z N_{b,z,Rd} = **615.1** kN

Min. buckling resistance $N_{b,Rd} = 615.1 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Design bending moment $M_{y,Ed} = 24.0 \text{ kNm}$

Lat. torsional buck length fact $K_{LT} = 1.00$ Design buckling resistance mt $M_{b,Rd} = 40.3$ kNm

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Section utilisation $UR_{B_1} = 0.828$ Section utilisation $UR_{B_2} = 0.814$

PASS - The buckling resistance is adequate